Uptake, translocation, and metabolism of anthracene in tea plants

Sci Total Environ. 2022 May 15:821:152905. doi: 10.1016/j.scitotenv.2021.152905. Epub 2022 Jan 11.

Abstract

The origin of 9, 10-anthraquinone (AQ) contamination in tea remains unclear at present. The objective of this study was to test the hypothesis that AQ could be produced from the precursor anthracene in tea plantations. To test this hypothesis, the uptake, translocation, and transformation of anthracene in tea (Camellia sinensis) seedlings using hydroponic experimentation was investigated. Anthracene concentrations in tea tissues rose with increased anthracene exposure, which in the roots were significantly (p < 0.05) higher than those in aboveground parts at the end of the exposure. These results indicated that anthracene tended to be adsorbed into tea seedling via the roots and accumulated largely within roots. The three main pathways of anthracene degradation in tea seedlings were suggested: oxygen was incorporated in the 9th and 10th positions of anthracene resulting in AQ (I) and anthrone (II), and naphthalene was formed by ring fission of anthracene via methylanthracene (III). The principal anthracene metabolites were AQ and anthrone. The concentrations of AQ, like anthrone, were markedly elevated in the roots than those in stems throughout the entire exposure period. Moreover, the translocation factors for anthracene and its primary metabolites AQ and anthrone from roots to stems were persistently lower than 0.1, demonstrating a poor translocation from roots to the aboveground regions. However, tea seedlings could take anthracene up from water and translocate it to the leaves. It was a possible risk for AQ contamination in tea leaves continuously exposed to anthracene for long periods of time because tea plants were perennial crops.

Keywords: 9, 10-anthraquinone; Anthracene; Tea (Camellia sinensis); Transformation; Translocation; Uptake.

MeSH terms

  • Camellia sinensis* / metabolism
  • Plant Leaves / metabolism
  • Plant Roots / metabolism
  • Seedlings / metabolism
  • Tea / metabolism

Substances

  • Tea