Alignment destabilizes crystal order in active systems

Phys Rev E. 2021 Dec;104(6-1):064605. doi: 10.1103/PhysRevE.104.064605.

Abstract

We combine numerical and analytical methods to study two-dimensional active crystals formed by permanently linked swimmers and with two distinct alignment interactions. The system admits a stationary phase with quasi-long-range translational order, as well as a moving phase with quasi-long-range active force director and velocity order. The translational order in the moving phase is significantly influenced by alignment interaction. For Vicsek-like alignment, the translational order is short ranged, whereas the bond-orientational order is quasi-long ranged, implying a moving hexatic phase. For elasticity-based alignment, the translational order is quasi-long ranged parallel to the motion and short ranged in the perpendicular direction, whereas the bond orientational order is long ranged. We also generalize these results to higher dimensions.