On-chip asymmetric beam-steering for broadband visible light

Opt Lett. 2022 Jan 15;47(2):369-372. doi: 10.1364/OL.443888.

Abstract

Artificial optical nanostructures including three-dimensional (3D) metamaterials and two-dimensional (2D) metasurfaces have shown overwhelming capability to control electromagnetic waves in desirable manners. However, the challenges of manufacturing a complex 3D bulk architecture or achieving nanoscale alignment between multilayers limit their practical applications, and they are unable to be used in on-chip integrated photonic devices. Therefore, the emerging dimensionality-reduction to on-chip metadevices would be of promising research value. Here, we propose a visible-frequency on-chip dual-layer design by cascading one-dimensional (1D) plasmonic metawires with metagratings, which can effectively manipulate surface plasmon polariton (SPP) wavefronts and exhibit on-chip asymmetric beam-steering functionality. Our 1D metawires consist of trapezoidal plasmonic nanoantennas and can enable broadband (460-700 nm) on-chip beam-deflection with a high conversion efficiency. The cascading plasmonic coupling between metawires/metagrating is further demonstrated with broadband asymmetric propagation performance, which is crucial for on-chip plasmonic device development. Finally, we study and theoretically verify a cascade system that integrates a dual-functional (convergent/divergent) lens for the forward/backward propagation, respectively. Compared with conventional free-space multilayer metasurfaces, on-chip 1D metawires enjoy single-time lithography processing and no alignment requirement for implementation in multifunctional devices. We believe that the proof-of-concept on-chip metawires study will pave a new, to the best of our knowledge, way for creating multifunctional photonic integrated devices and hold tremendous potential in realizing on-chip transformation optics, information processing, spectrometers, as well as optical sensors.