Comprehensive patient-level classification and quantification of driver events in TCGA PanCanAtlas cohorts

PLoS Genet. 2022 Jan 14;18(1):e1009996. doi: 10.1371/journal.pgen.1009996. eCollection 2022 Jan.

Abstract

There is a growing need to develop novel therapeutics for targeted treatment of cancer. The prerequisite to success is the knowledge about which types of molecular alterations are predominantly driving tumorigenesis. To shed light onto this subject, we have utilized the largest database of human cancer mutations-TCGA PanCanAtlas, multiple established algorithms for cancer driver prediction (2020plus, CHASMplus, CompositeDriver, dNdScv, DriverNet, HotMAPS, OncodriveCLUSTL, OncodriveFML) and developed four novel computational pipelines: SNADRIF (Single Nucleotide Alteration DRIver Finder), GECNAV (Gene Expression-based Copy Number Alteration Validator), ANDRIF (ANeuploidy DRIver Finder) and PALDRIC (PAtient-Level DRIver Classifier). A unified workflow integrating all these pipelines, algorithms and datasets at cohort and patient levels was created. We have found that there are on average 12 driver events per tumour, of which 0.6 are single nucleotide alterations (SNAs) in oncogenes, 1.5 are amplifications of oncogenes, 1.2 are SNAs in tumour suppressors, 2.1 are deletions of tumour suppressors, 1.5 are driver chromosome losses, 1 is a driver chromosome gain, 2 are driver chromosome arm losses, and 1.5 are driver chromosome arm gains. The average number of driver events per tumour increases with age (from 7 to 15) and cancer stage (from 10 to 15) and varies strongly between cancer types (from 1 to 24). Patients with 1 and 7 driver events per tumour are the most frequent, and there are very few patients with more than 40 events. In tumours having only one driver event, this event is most often an SNA in an oncogene. However, with increasing number of driver events per tumour, the contribution of SNAs decreases, whereas the contribution of copy-number alterations and aneuploidy events increases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Algorithms
  • Biomarkers, Tumor / genetics
  • Computational Biology / methods*
  • Databases, Genetic
  • Female
  • Gene Regulatory Networks*
  • Humans
  • Male
  • Middle Aged
  • Mutation*
  • Neoplasms / genetics*
  • Precision Medicine
  • Young Adult

Substances

  • Biomarkers, Tumor

Grants and funding

AVB received financial support from MIPT 5-100 program for early career researchers. The funder played no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.