Heterogeneity among tumors with acquired resistance to EGFR tyrosine kinase inhibitors harboring EGFR-T790M mutation in non-small cell lung cancer cells

Cancer Med. 2022 Feb;11(4):944-955. doi: 10.1002/cam4.4504. Epub 2022 Jan 14.

Abstract

EGFR-T790M mutation is a major mechanism underlying acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs) in lung cancer with mutated EGFR. However, differences in the biological characteristics of T790M tumors based on treatment regimens with each generation of EGFR-TKI are not fully understood. We established cell lines with acquired resistance harboring EGFR-T790M mutation derived from xenograft tumors treated with each generation of EGFR-TKI and examined their biological characteristics with respect to third-generation EGFR-TKI osimertinib sensitivity. Second-generation EGFR-TKI dacomitinib-resistant cells with T790M-exhibited higher sensitivity to osimertinib than first-generation EGFR-TKI gefitinib-resistant cells with T790M via inhibition of AKT and ERK signaling and promotion of apoptosis. Furthermore, gefitinib-resistant cells showed enhanced intratumor heterogeneity accompanied by genomic instability and activation of alternative resistance mechanisms compared with dacomitinib-resistant cells; this suggests that the maintenance of EGFR dependency after acquiring resistance might depend on the type of EGFR-TKI. Our results demonstrate that the progression of tumor heterogeneity via both genetic and non-genetic mechanisms might affect osimertinib sensitivity in tumors with acquired resistance harboring EGFR-T790M mutation.

Keywords: EGFR-T790M mutation; dacomitinib; gefitinib; tumor heterogeneity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Drug Resistance, Neoplasm / genetics
  • ErbB Receptors
  • Gefitinib / pharmacology
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / pathology
  • Mutation
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use

Substances

  • Protein Kinase Inhibitors
  • EGFR protein, human
  • ErbB Receptors
  • Gefitinib