Use of Target-Specific Liposome and Magnetic Nanoparticle Conjugation for the Amplified Detection of Norovirus

ACS Appl Bio Mater. 2020 Jun 15;3(6):3560-3568. doi: 10.1021/acsabm.0c00213. Epub 2020 May 1.

Abstract

Viral diseases are one of the most life-threatening diseases as they can erupt unpredictably and spread rapidly in any medium with a very small number of particles. Therefore, the key for lethal virus detection should be highly sensitive in the early-stage detection, which can help increase the chance of survival. Amplification of the detecting signal is one of the most promising mechanisms for the detection of low-concentration analytes. A proper amplification can develop such a kind of system where a small number of particles can produce intense signals for a prominent detection. Keeping this in mind, in this report, we have presented a fluorometric method to detect norovirus (NoV) by a newly developed fluorophore-labeled liposome and a magnetically modified Fe3O4 combined system. Homogeneously distributed amine-functionalized liposomes have been constructed filled with a strong fluorophore of calcein. Simultaneously, (3-aminopropyl)-triethoxysilane (APTES)-functionalized Fe3O4 nanoparticles are also synthesized by the standard silanization process, and these two separately synthesized nanoparticles were functionalized with an antibody to achieve specificity. The Fe3O4 and calcein-liposome system has been applied for NoV detection, which was magnetically separated from the analyte medium and then externally burst to release the fluorophores from the core of the liposome. The easiness, rapidity, and sensitivity in a wide linear range can offer a huge potential of this method in point-of-care diagnostics.

Keywords: biosensor; calcein; confocal; fluorescence; liposomes; virus.