Glucose- and pH-Responsive Supramolecular Polymer Vesicles Based on Host-Guest Interaction for Transcutaneous Delivery of Insulin

ACS Appl Bio Mater. 2020 Sep 21;3(9):6376-6383. doi: 10.1021/acsabm.0c00813. Epub 2020 Aug 25.

Abstract

Smart insulin delivery platforms having the ability of mimicking pancreatic cells are highly expected for diabetes treatment. Herein, a smart glucose-sensitive insulin delivery platform on the basis of transcutaneous microneedles has been designed. The as-prepared microneedles are composed of glucose- and pH-responsive supramolecular polymer vesicles (PVs) as the drug storage and water soluble polymers as the matrix. The well-defined PVs are constructed from the host-guest inclusion complex between water-soluble pillar[5]arene (WP5) with pH-responsiveness and paraquat-ended poly(phenylboronic acid) (PPBA-G) with glucose-sensitivity. The drug-loaded PVs, including insulin and glucose oxidase (GOx) can quickly respond to elevated glucose level, accompanied by the disassociation of PVs and fast release of encapsulated insulin. Moreover, the insulin release rate is further accelerated by GOx, which generates gluconic acid at high glucose levels, thus decreasing the local pH. Therefore, the host-guest interaction between WP5 and PPBA-G is destroyed and a total structure disassociation of PVs takes place, contributing to a fast release of encapsulated insulin. The in vivo insulin delivery to diabetic rats displays a quick response to hyperglycemic levels and then can fast regulate the blood glucose concentrations to normal levels, which demonstrates that the obtained smart insulin device has a highly potential application in the treatment of diabetes.

Keywords: diabetes; host−guest interaction; polymer vesicles; stimuli-responsive; transdermal insulin delivery.