Construction of a Drug Delivery System and Photodynamic Therapy Reagent Based on the Biotin-HSA-DDA-TCPP Molecules and the Application of Synergistic Antitumor Effect

ACS Appl Bio Mater. 2020 Sep 21;3(9):6237-6250. doi: 10.1021/acsabm.0c00756. Epub 2020 Sep 8.

Abstract

A biotin-HSA-DDA-TCPP molecule, which can be used as a photodynamic therapeutic agent and drug carrier, was synthesized. The molecule can self-assemble into spherical aggregates, which can be loaded with Dox to form biotin-HSA-DDA-TCPP-Dox nanoparticles in aqueous solution, and the Dox loading efficiency was 86.6 ± 1.76%. The Dox's release behavior was pH responsive and has a sustained release. Cell experiments showed that biotin-HSA-DDA-TCPP-Dox nanoparticles could effectively induce cancer cell apoptosis to exert anticancer and photodynamic therapy effects. The results of animal experiments, tissue sections, and blood biochemistry tests showed that the biotin-HSA-DDA-TCPP-Dox nanoparticles could exert the effect of photodynamic therapy and antitumor, which is similar to Dox after laser irradiation, and achieve a synergistic antitumor effect. The nanoparticles can significantly reduce the Dox toxicity and increase the circulation time of the drug in the body. In summary, the biotin-HSA-DDA-TCPP molecule, which combines the advantages of photodynamic therapy and drug carrier, has great potential in clinical application.

Keywords: HSA; anticancer; biotin; photodynamic therapy; porphyrin.