Multifunctional, Low Friction, Antimicrobial Approach for Biomaterial Surface Enhancement

ACS Appl Bio Mater. 2020 Mar 16;3(3):1385-1393. doi: 10.1021/acsabm.9b01042. Epub 2020 Mar 4.

Abstract

Poly(vinyl chloride) (PVC) biomaterials perform a host of life-saving and life-enhancing roles when employed as medical devices within the body. High frictional forces between the device surface and interfacing tissue can, however, lead to a host of complications including tissue damage, inflammation, pain, and infection. We herein describe a versatile surface modification method using multifunctional hydrogel formulations to increase lubricity and prevent common device-related complications. In a clinically relevant model of the urinary tract, simulating the mechanical and biological environments encountered in vivo, coated candidate catheter surfaces demonstrated significantly lower frictional resistance than uncoated PVC, with reductions in coefficient of friction values of more than 300-fold due to hydration of the surface-localized polymer network. Furthermore, this significant lubrication capacity was retained following hydration periods of up to 28 days in artificial urine at pH 6 and pH 9, representing the pH of physiologically normal and infected urine, respectively, and during 200 repeated cycles of applied frictional force. Importantly, the modified surfaces also displayed excellent antibacterial activity, which could be facilely tuned to achieve reductions of 99.8% in adherence of common hospital-acquired pathogens, Staphylococcus aureus and Proteus mirabilis, relative to their uncoated counterparts through incorporation of chlorhexidine in the coating matrix as a model antiseptic. The remarkable, and pH-independent, tribological performance of these lubricious, antibacterial, and highly durable surfaces offers exciting promise for use of this PVC functionalization approach in facilitating smooth and atraumatic insertion and removal of a wide range of medical implants, ultimately maintaining user health and dignity.

Keywords: biomaterials; functional surfaces; infection; medical devices; tribology.