Neutron powder diffraction study of the phase transitions in deuterated methylammonium lead iodide

J Phys Condens Matter. 2022 Jan 31;34(14). doi: 10.1088/1361-648X/ac4aa9.

Abstract

We report the results of a neutron powder diffraction study of the phase transitions in deuterated methylammonium lead iodide, with a focus on the system of orientational distortions of the framework of PbI6octahedra. The results are analysed in terms of symmetry-adapted lattice strains and normal mode distortions. The higher-temperature cubic-tetragonal phase transition at 327 K is weakly discontinuous and nearly tricritical. The variations of rotation angles and spontaneous strains with temperature are consistent with a standard Landau theory treatment. The lower-temperature transition to the orthorhombic phase at 165 K is discontinuous, with two systems of octahedral rotations and internal distortions that together can be described by 5 order parameters of different symmetry. In this paper we quantify the various symmetry-breaking distortions and their variation with temperature, together with their relationship to the spontaneous strains, within the formalism of Landau theory. A number of curious results in the low-temperature phase are identified, particularly regarding distortion amplitudes that decrease rather than increase with lowering temperature.

Keywords: Landau theory; hybrid perovskites; neutron diffraction; phase transitions; spontaneous strain.