Faeces of marine birds and mammals as substrates for microbial plankton communities

Mar Environ Res. 2022 Feb:174:105560. doi: 10.1016/j.marenvres.2022.105560. Epub 2022 Jan 6.

Abstract

The chemical composition of the seawater soluble fraction (WSF) of yellow-legged gulls and harbour seal faeces and their impact on microbial plankton communities from an eutrophic coastal area have been tested. After characterisation of the C:N:P stoichiometry, trace metals content and organic molecular composition of the faeces, significant differences between species have been observed in all parameters. Seagull faeces present about three times larger N content than seal faeces and are also richer in trace elements except for Cu and Zn. Organic nitrogen in seagull faeces is dominated by uric acid, while the proteins are the main N source in seal faeces. It is remarkable that seagull faeces are five times more soluble in seawater than seal faeces and present a much higher N content (48.0 versus 3.5 mg N in the WSF per gram of dry faeces), >85% of which as dissolved organic nitrogen, with C:N molar ratios of 2.4 and 13 for seagull and seal faeces, respectively. Based on this contrasting N content, large differences were expected in their impact on microbial populations. To test this hypothesis, a 3-day microcosm incubation experiment was performed, in which coastal seawater was amended with realistic concentrations of the WSF of seagull or seal faeces. A significant and similar increase in bacterial biomass occurred in response to both treatments. In the case of phytoplankton, the impact of the treatment with seagull faeces was significantly larger that the effect of the treatment with seal faeces. Our data suggest that the distinct competitive abilities of phytoplankton and bacteria largely influence the potential impact of distinct animal faeces on primary productivity in coastal ecosystems. Impacts on the microbial plankton communities do not affect only this trophic level, but the whole trophic chain, contributing to nutrient recycling in coastal areas where large populations of these species are settled.

Keywords: Bacterioplankton; Bioavailability; Faeces; Phytoplankton; Seagull; Seal; Water-soluble fraction.

MeSH terms

  • Animals
  • Birds
  • Feces
  • Mammals
  • Microbiota*
  • Phytoplankton
  • Plankton*
  • Seawater