Diacerein, an inhibitor of IL-1β downstream mediated apoptosis, improves radioimmunotherapy in a mouse model of Burkitt's lymphoma

Am J Cancer Res. 2021 Dec 15;11(12):6147-6159. eCollection 2021.

Abstract

Lymphoma has the characteristics of a solid tumor. Penetration of monoclonal antibodies is limited in solid tumors during radioimmunotherapy (RIT). Here, we first investigated the use of diacerein (DIA) as a combination drug to improve the penetration and therapeutic efficacy of 131I-rituximab (RTX) using the Burkitt's lymphoma mouse model. We selected DIA through computational drug repurposing and focused on rheumatoid arthritis (RA) drug interaction genes to minimize side effects. Then, the cytotoxicity of DIA was assessed in vitro using three different lymphoma cell lines. DIA-induced apoptosis was confirmed by Western blotting. After confirming apoptosis, we confirmed the enhanced uptake of 131I-RTX in Burkitt's lymphoma mouse model using SPECT/CT. Autoradiography of 131I-RTX confirmed the therapeutic effect of DIA. Finally, the tumor size and survival rate were assessed to measure the enhanced therapeutic efficacy when DIA was used. In addition, we assessed the dose-dependency of DIA in terms of the accumulation of 131I-RTX in tumor tissue, the tumor size, and the survival rate. The in vitro cytotoxicity was 10.9%. We showed that DIA induced apoptosis which was related to downstream IL-1β signaling by Western blotting. We found increased Annexin V positive apoptosis after DIA administration. Immuno SPECT/CT images demonstrated a higher uptake of 131I-RTX in tumors in the DIA-administered group than that in the PBS-alone group. However, there were no statistical differences of dose-dependency between 20 mg/kg and 40 mg/kg of DIA. Tumor growth was significantly inhibited in the group treated with the combination of DIA plus 131I-RTX at 7 days after injection. Our suggested combination of DIA and 131I-RTX strategies could enhance the efficacy of 131I-RTX treatment.

Keywords: 131I; Radioimmunotherapy; diacerein; drug repurposing; lymphoma; rituximab.