Ca2+ participates in the regulation of microalgae triacylglycerol metabolism under heat stress

Environ Res. 2022 May 15:208:112696. doi: 10.1016/j.envres.2022.112696. Epub 2022 Jan 10.

Abstract

Microalgae are the largest CO2 fixer and O2 producer on the earth and occupy an increasingly important position in human life and production. Various environmental factors have a significant impact on the growth and metabolism of microalgae. As global warming intensifies, heat stress has become a crucial factor affecting the microalgae industry. However, till now, it has not been clear how microalgae sensed the temperature stress, transmitted stress signals and adjusted in intracellular metabolic pathways. In this study, the growth of microalgae Auxenochlorella protothecoides UTEX2341 was inhibited at 32 °C, but the single cell dry weight increased. The cell component analyses showed that both the carbohydrate and total protein content decreased significantly, while the lipid content increased by 158%. Meanwhile, the intracellular Ca2+ concentration increased continuously, with a maximum increase of 1.65 times. According to the transcriptome analyses, the up-regulation of Ca2+ influx channel protein mid1-complementing activity 1 (MCA1) gene and the down-regulation of efflux channel protein cation exchanger 1(CAX) and autoinhibited Ca2+-ATPase 1 (ACA1) genes in cytoplasmic membrane jointly facilitated the increase of Ca2+ in the cytoplasm. Coexpression network analysis indicated that the fluctuation of Ca2+ in the cytoplasm could activate the expression of transcription factors MYB3 and AP2-4 through calmodulin (CAM) and calcium-dependent protein kinase (CDPK), and then regulate glycerol-3-phosphate acyltransferases (GPAT) at the beginning of TAG synthesis and diacylglycerol acyltransferase (DGAT)/phospholipid: diacylglycerol acyltransferase (PDAT) in the last step of TAG synthesis. Furthermore, the addition of Ca2+ specific chelator BAPTA-AM inhibited the expression of GPAT, which was consistent with the decrease in microalgae lipid content. The results proved that Ca2+ participated in the regulation of microalgae TAG synthesis under heat stress, which provided a new view for the understanding of the microalgae lipid accumulation mechanism.

Keywords: Ca(2+) signaling pathway; Calcium-dependent protein kinases; Calmodulin; Heat stress; Microalgae; Triacylglycerol metabolism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Heat-Shock Response
  • Humans
  • Lipid Metabolism
  • Metabolic Networks and Pathways
  • Microalgae* / metabolism
  • Triglycerides / metabolism

Substances

  • Triglycerides