In situ quantification of poly(3-hydroxybutyrate) and biomass in Cupriavidus necator by a fluorescence spectroscopic assay

Appl Microbiol Biotechnol. 2022 Jan;106(2):635-645. doi: 10.1007/s00253-021-11670-8. Epub 2022 Jan 11.

Abstract

Fluorescence spectroscopy offers a cheap, simple, and fast approach to monitor poly(3-hydroxybutyrate) (PHB) formation, a biodegradable polymer belonging to the biodegradable polyester class polyhydroxyalkanoates. In the present study, a fluorescence and side scatter-based spectroscopic setup was developed to monitor in situ biomass, and PHB formation of biotechnological applied Cupriavidus necator strain. To establish PHB quantification of C. necator, the dyes 2,2-difluoro-4,6,8,10,12-pentamethyl-3-aza-1-azonia-2-boranuidatricyclo[7.3.0.03,7]dodeca-1(12),4,6,8,10-pentaene (BODIPY493/503), ethyl 5-methoxy-1,2-bis(3-methylbut-2-enyl)-3-oxoindole-2-carboxylate (LipidGreen2), and 9-(diethylamino)benzo[a]phenoxazin-5-one (Nile red) were compared with each other. Fluorescence staining efficacy was obtained through 3D-excitation-emission matrix and design of experiments. The coefficients of determination were ≥ 0.98 for all three dyes and linear to the high-pressure liquid chromatography obtained PHB content, and the side scatter to the biomass concentration. The fluorescence correlation models were further improved by the incorporation of the biomass-related side scatter. Afterward, the resulting regression fluorescence models were successfully applied to nitrogen-deficit, phosphor-deficit, and NaCl-stressed C. necator cultures. The highest transferability of the regression models was shown by using LipidGreen2. The novel approach opens a tailor-made way for a fast and simultaneous detection of the crucial biotechnological parameters biomass and PHB content during fermentation. KEY POINTS: • Intracellular quantification of PHB and biomass using fluorescence spectroscopy. • Optimizing fluorescence staining conditions and 3D-excitation-emission matrix. • PHB was best obtained by LipidGreen2, followed by BODIPDY493/503 and Nile red.

Keywords: BODIPY493/503; Cupriavidus necator; Fluorescence spectroscopy; LipidGreen2; Nile red; Polyhydroxyalkanoates.

MeSH terms

  • 3-Hydroxybutyric Acid
  • Biomass
  • Cupriavidus necator*
  • Hydroxybutyrates
  • Polyesters
  • Spectrometry, Fluorescence

Substances

  • Hydroxybutyrates
  • Polyesters
  • poly-beta-hydroxybutyrate
  • 3-Hydroxybutyric Acid