X-ray Dose-Enhancing Impact of Functionalized Au-Fe3O4 Nanoheterodimers on MCF-7 and A549 Multicellular Tumor Spheroids

ACS Appl Bio Mater. 2021 Apr 19;4(4):3113-3123. doi: 10.1021/acsabm.0c01494. Epub 2021 Mar 19.

Abstract

The efficiency of nanoparticle-enhanced radiotherapy was studied by loading MCF-7 and A549 multicellular tumor spheroids (MCTSs) with caffeic acid- and nitrosonium-functionalized Au-Fe3O4 nanoheterodimers (Au-Fe3O4 NHDs). Transmission electron microscope images of MCTS cross-sectional sections visualized the invasion and distribution of the nitrosonium- and caffeic acid-functionalized Au-Fe3O4 NHDs (NO- and CA-NHDs) in the A549 and MCF-7 MCTSs, whereas the iron content of the MCTSs were quantified using the ferrozine assay. The synergistic impact of intracellular NO- and CA-NHDs and X-ray irradiation on the growth dynamics of the A549 and MCF-7 MCTSs was surveyed by monitoring their temporal evolution under a light microscope over a period of 14 days. The emergence of hypoxia during the spheroid growth was followed by detecting the lactate efflux of MCTSs without and with NO- and CA-NHDs. The performance of the NO- and CA-NHDs as X-ray dose-enhancing agents in the A549 and MCF-7 MCTSs was clarified by performing clonogenic cell survival assays and determining the respective dose-modifying factors for X-ray doses of 0, 2, 4, and 6 Gy. The NO- and CA-NHDs were shown to perform as potent X-ray dose-enhancing agents in A549 and MCF-7 MCTSs. Moreover, the CA-NHDs boosted their radio-sensitizing efficacy by inhibiting the lactate efflux as impairing metabolic reprogramming. A synergistic effect on the MCTS destruction was observed for the combination of both NHDs since the surfactants differ in their antitumor effect.

Keywords: A549 cells; Au−Fe3O4 nanoheterodimers; MCF-7 cells; X-ray dose enhancement; multicellular tumor spheroids.

MeSH terms

  • Biocompatible Materials / chemistry
  • Biocompatible Materials / pharmacology*
  • Cell Survival / drug effects
  • Ferric Compounds / chemistry
  • Ferric Compounds / pharmacology*
  • Gold / chemistry
  • Gold / pharmacology*
  • Humans
  • MCF-7 Cells
  • Materials Testing
  • Nanoparticles / chemistry*
  • Particle Size
  • Spheroids, Cellular / drug effects*
  • X-Rays*

Substances

  • Biocompatible Materials
  • Ferric Compounds
  • ferric oxide
  • Gold