MSNs-Based Nanocomposite for Biofilm Imaging and NIR-Activated Chem/Photothermal/Photodynamic Combination Therapy

ACS Appl Bio Mater. 2021 Mar 15;4(3):2810-2820. doi: 10.1021/acsabm.1c00034. Epub 2021 Feb 25.

Abstract

Bacterial infections caused by biofilms are severe clinical problems, resulting in high drug resistance by limiting the penetration of antibiotics. Herein, a near-infrared (NIR)-activated chem/photodynamic/photothermal combined therapeutic agent is proposed by loading fluorescein isothiocyanate (FITC), ultrasmall copper sulfide nanoparticles (Cu2-xSNPs), and ε-polylysine (PLL) onto mesoporous silica nanoparticles (MSNs) through a layer-by-layer self-assembly approach. FITC-doped MSNs are prepared to monitor the permeability and accumulation of nanocomposites into biofilms. MSNs can also act as hosts for the synthesis of ultrasmall Cu2-xSNPs, which has effective photodynamic and photothermal ablation against bacteria under NIR light irradiation. Moreover, biodegradable PLL introduced can not only enhance adhesion toward the bacterial surface to increase the effectiveness of phototherapy but also damage bacteria through electrostatic interaction. As a result, the prepared nanocomposites could not only penetrate biofilms but also ablate biofilms through combined chem/photodynamic/photothermal effects under NIR light irradiation. Furthermore, the nanocomposites could treat bacterial infections in vivo with negligible tissue toxicity. Overall, the finely designed nanocomposites are anticipated to display promising applications in imaging-guided chem/photodynamic/photothermal combined therapy for bacterial infections.

Keywords: MSNs-based nanocomposites; biofilm; chem/photodynamic/photothermal combined therapy; fluorescent imaging; near-infrared light.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Biocompatible Materials / chemistry
  • Biocompatible Materials / pharmacology*
  • Biofilms / drug effects
  • Copper / chemistry
  • Copper / pharmacology
  • Fluorescein-5-isothiocyanate / chemistry
  • Fluorescein-5-isothiocyanate / pharmacology
  • Infrared Rays
  • Male
  • Materials Testing
  • Microbial Sensitivity Tests
  • Nanocomposites / chemistry
  • Particle Size
  • Photochemotherapy*
  • Porosity
  • Pseudomonas aeruginosa / drug effects*
  • Rats
  • Rats, Sprague-Dawley
  • Silicon Dioxide / chemistry
  • Silicon Dioxide / pharmacology
  • Staphylococcus aureus / drug effects*
  • Sulfides / chemistry
  • Sulfides / pharmacology
  • Surface Properties

Substances

  • Anti-Bacterial Agents
  • Biocompatible Materials
  • Sulfides
  • Silicon Dioxide
  • Copper
  • Fluorescein-5-isothiocyanate