Quality factor control of mechanical resonators using variable phononic bandgap on periodic microstructures

Sci Rep. 2022 Jan 10;12(1):392. doi: 10.1038/s41598-021-04459-2.

Abstract

The quality factor (Q-factor) is an important parameter for mechanical resonant sensors, and the optimal values depend on its application. Therefore, Q-factor control is essential for microelectromechanical systems (MEMS). Conventional methods have some restrictions, such as additional and complicated equipment or nanoscale dimensions; thus, structural methods are one of the reasonable solutions for simplifying the system. In this study, we demonstrate Q-factor control using a variable phononic bandgap by changing the length of the periodic microstructure. For this, silicon microstructure is used because it has both periodicity and a spring structure. The bandgap change is experimentally confirmed by measuring the Q-factors of mechanical resonators with different resonant frequencies. The bandgap range varies depending on the extended structure length, followed by a change in the Q-factor value. In addition, the effects of the periodic structure on the Q-factor enhancement and the influence of stress on the structural length were evaluated. Although microstructures can improve the Q-factors irrespective of periodicity; the result of the periodic microstructure is found to be efficient. The proposed method is feasible as the novel Q-factor control technique has good compatibility with conventional MEMS.

Grants and funding