DNA methylation aging and transcriptomic studies in horses

Nat Commun. 2022 Jan 10;13(1):40. doi: 10.1038/s41467-021-27754-y.

Abstract

Cytosine methylation patterns have not yet been thoroughly studied in horses. Here, we profile n = 333 samples from 42 horse tissue types at loci that are highly conserved between mammalian species using a custom array (HorvathMammalMethylChip40). Using the blood and liver tissues from horses, we develop five epigenetic aging clocks: a multi-tissue clock, a blood clock, a liver clock and two dual-species clocks that apply to both horses and humans. In addition, using blood methylation data from three additional equid species (plains zebra, Grevy's zebras and Somali asses), we develop another clock that applies across all equid species. Castration does not significantly impact the epigenetic aging rate of blood or liver samples from horses. Methylation and RNA data from the same tissues define the relationship between methylation and RNA expression across horse tissues. We expect that the multi-tissue atlas will become a valuable resource.

Publication types

  • Meta-Analysis
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / genetics*
  • Animals
  • Blood
  • DNA Methylation*
  • Epigenesis, Genetic
  • Epigenomics
  • Equidae / genetics
  • Genetic Techniques
  • Horses / genetics*
  • Humans
  • Liver
  • Transcriptome*