Designing Phenyl Porous Organic Polymers with High-Efficiency Tetracycline Adsorption Capacity and Wide pH Adaptability

Polymers (Basel). 2022 Jan 5;14(1):203. doi: 10.3390/polym14010203.

Abstract

Adsorption is an effective method to remove tetracycline (TC) from water, and developing efficient and environment-friendly adsorbents is an interesting topic. Herein, a series of novel phenyl porous organic polymers (P-POPs), synthesized by one-pot polymerization of different ratios of biphenyl and triphenylbenzene under AlCl3 catalysis in CH2Cl2, was studied as a highly efficient adsorbent to removal of TC in water. Notably, the obtained POPs possessed abundant phenyl-containing functional groups, large specific surface area (1098 m2/g) with abundant microporous structure, high pore volume (0.579 cm3/g), favoring the removal of TC molecules. The maximum adsorption capacity (fitted by the Sips model) could achieve 581 mg/g, and the adsorption equilibrium is completed quickly within 1 h while obtaining excellent removal efficiency (98%). The TC adsorption process obeyed pseudo-second-order kinetics and fitted the Sips adsorption model well. Moreover, the adsorption of POPs to TC exhibited a wide range of pH (2-10) adaptability and outstanding reusability, which could be reused at least 5 times without significant changes in structure and efficiency. These results lay a theoretical foundation for the application of porous organic polymer adsorbents in antibiotic wastewater treatment.

Keywords: adsorption; pH adaptability; porous organic polymers; reusability; tetracycline.