Self-Healing Behavior of Polymer/Protein Hybrid Hydrogels

Polymers (Basel). 2021 Dec 30;14(1):130. doi: 10.3390/polym14010130.

Abstract

The paper presents the viscoelastic properties of new hybrid hydrogels containing poly(vinyl alcohol) (PVA), hydroxypropylcellulose (HPC), bovine serum albumin (BSA) and reduced glutathione (GSH). After heating the mixture at 55 °C, in the presence of GSH, a weak network is formed due to partial BSA unfolding. By applying three successive freezing/thawing cycles, a stable porous network structure with elastic properties is designed, as evidenced by SEM and rheology. The hydrogels exhibit self-healing properties when the samples are cut into two pieces; the intermolecular interactions are reestablished in time and therefore the fragments repair themselves. The effects of the BSA content, loaded deformation and temperature on the self-healing ability of hydrogels are presented and discussed through rheological data. Due to their versatile viscoelastic behavior, the properties of PVA/HPC/BSA hydrogels can be tuned during their preparation in order to achieve suitable biomaterials for targeted applications.

Keywords: BSA; HPC; PVA; hybrid network; self-healing; viscoelasticity.