Biosynthesis of Silver Chloride Nanoparticles by Rhizospheric Bacteria and Their Antibacterial Activity against Phytopathogenic Bacterium Ralstonia solanacearum

Molecules. 2021 Dec 30;27(1):224. doi: 10.3390/molecules27010224.

Abstract

Ralstonia solanacearum is the most destructive pathogen, causing bacterial wilt disease of eggplant. The present study aimed to develop green synthesis and characterization of silver chloride nanoparticles (AgCl-NPs) by using a native bacterial strain and subsequent evaluation of their antibacterial activity against R. solanacearum. Here, a total of 10 bacterial strains were selected for the biosynthesis of AgCl-NPs. Among them, the highest yield occurred in the synthesis of AgCl-NPs using a cell-free aqueous filtrate of strain IMA13. Ultrastructural observation revealed that the AgCl-NPs were spherical and oval with smooth surfaces and 5-35 nm sizes. XRD analysis studies revealed that these particles contained face-centered cubic crystallites of metallic Ag and AgCl. Moreover, FTIR analysis showed the presence of capping proteins, carbohydrates, lipids, and lipopeptide compounds and crystalline structure of AgCl-NPs. On the basis of phylogenetic analysis using a combination of six gene sequences (16S, gyrA, rpoB, purH, polC, and groEL), we identified strain IMA13 as Bacillus mojavensis. Three kinds of lipopeptide compounds, namely, bacillomycin D, iturin, and fengycin, forming cell-free supernatant produced by strain IAM13, were identified by MALDI-TOF mass spectrometry. Biogenic AgCl-NPs showed substantial antibacterial activity against R. solanacearum at a concentration of 20 µg/mL-1. Motility assays showed that the AgCl-NPs significantly inhibited the swarming and swimming motility (61.4 and 55.8%) against R. solanacearum. Moreover, SEM and TEM analysis showed that direct interaction of AgCl-NPs with bacterial cells caused rupture of cell wall and cytoplasmic membranes, as well as leakage of nucleic acid materials, which ultimately resulted in the death of R. solanacearum. Overall, these findings will help in developing a promising nanopesticide against phytopathogen plant disease management.

Keywords: Bacillus mojavensis; Ralstonia solanacearum; antibacterial activity; molecular interaction; taxonomy.

MeSH terms

  • Anti-Bacterial Agents / biosynthesis*
  • Anti-Bacterial Agents / pharmacology*
  • Antibiosis
  • Bacteria / metabolism*
  • Lipopeptides / chemistry
  • Lipopeptides / pharmacology
  • Metal Nanoparticles* / ultrastructure
  • Microbial Sensitivity Tests
  • Plant Diseases / microbiology
  • Ralstonia solanacearum / drug effects*
  • Ralstonia solanacearum / ultrastructure
  • Rhizosphere*
  • Silver Compounds / metabolism*
  • Spectrum Analysis

Substances

  • Anti-Bacterial Agents
  • Lipopeptides
  • Silver Compounds
  • silver chloride