Melting, Crystallization, and In Vitro Digestion Properties of Fats Containing Stearoyl-Rich Triacylglycerols

Molecules. 2021 Dec 29;27(1):191. doi: 10.3390/molecules27010191.

Abstract

Fats containing the stearoyl-rich triacylglycerols (TAGs) of 1,2-distearoyl-3-oleoylglycerol (SSO) and 1,3-dioleoyl-2-stearoylglycerol (OSO) were synthesized via the lipase-catalyzed acidolysis of tristearin (SSS)-rich fat and oleic acids, followed by solvent fractionation. Their physicochemical properties and in vitro digestibilities were compared. The SSS-, SSO-, and OSO-rich fats comprised 81.6%, 52.9%, and 33.1% stearic acid, respectively, whereas oleic acid comprised 2.9%, 37.5%, and 56.2%, respectively. The SSS-, SSO-, and OSO-rich fats contained the TAGs of SaSaSa (100.00%), SaSaMo (86.98%), and MoSaMo (67.12%), respectively, and the major TAGs were SSS, SSO, and OSO, respectively. Melting and crystallization temperatures were higher and fat crystals were larger and densely packed in the descending order of SSS-, SSO and OSO-rich fats. Both in vitro multi-step digestion and pH-stat digestion were more rapid for OSO- than SSO-rich fat. Oleic acid was digested faster than stearic acid during the initial digestion, then the rate decreased, whereas that of stearic acid increased over prolonged digestion. Fats that were richer in stearoyl at the sn-1,3 position of TAG melted and crystallized at higher temperatures, had a densely packed microstructure of large fat crystals and were poorly digested. Stearic acid imparts the essential physical attributes of melting and crystallization in solid fats, and the low digestible stearoyl-rich fat would be a viable substitute for trans fatty acids in food lipid industry.

Keywords: 1,2-distearoyl-3-oleoylglycerol; 1,3-dioleoyl-2-stearoylglycerol; crystallization; digestibility; melting; stearoyl-rich fats.

MeSH terms

  • Chemical Phenomena
  • Chromatography, High Pressure Liquid
  • Dietary Fats / analysis*
  • Digestion
  • Fatty Acids / chemistry
  • Hydrogen-Ion Concentration
  • Hydrolysis
  • Oleic Acid / chemistry
  • Spectrum Analysis
  • Transition Temperature
  • Triglycerides / chemistry*

Substances

  • Dietary Fats
  • Fatty Acids
  • Triglycerides
  • Oleic Acid