Tungsten and Molybdenum Heteropolyanions with Different Central Ions-Correlation between Theory and Experiment

Molecules. 2021 Dec 29;27(1):187. doi: 10.3390/molecules27010187.

Abstract

Density functional theory calculations were carried out to investigate the electronic structures of Keggin-typed [XMo12O40]n- and [XW12O40]n- anions with different heteroatoms (X = Zn2+, B3+, Al3+, Ga3+, Si4+, Ge4+, P5+, As5+, and S6+). The influence of solvent on redox properties of heteropolyanions was discussed. For [XW12O40]n- systems two linear correlation: first, between the experimental redox potential and energies of LUMO orbital; and second, between the experimental redox potential and total energy interaction (calculated between internal tetrahedron (XO4n-), and rest of Kegging anion skeleton, (W12O36)) were designated. Taking into account the similarity of XW12O40n- and XMo12O40n- systems (in geometry and electronic structure), the estimated redox potential of molybdenum heteropolyanions (with X being p block elements) in different solvent were proposed.

Keywords: DFT calculations; correlations analysis; energy decomposition analysis (EDA); heteropolyacids; redox potential.