Genomic Analysis of Purebred and Crossbred Angus Cows Quantifies Heterozygosity, Breed, and Additive Effects on Components of Reproduction

Animals (Basel). 2021 Dec 28;12(1):61. doi: 10.3390/ani12010061.

Abstract

Multiple studies have quantified the production differences of Hereford Angus crossbreds compared to purebred Angus for a range of traits including growth, carcass, and reproductive traits. This study aims to quantify breed and heterosis effects on maternal performance using genomics. Thirty Hereford and thirty Angus sires were mated to 1100 Angus heifers and cows in a large commercial herd run on pasture at Musselroe Bay, Tasmania, Australia. Approximately 1650 calves were born. Heifers were weaned, scanned for attainment of puberty prior to joining at approximately 15 months of age, joined, and then recorded for status of pregnancy, calving, lactating, 2nd pregnancy, and weaning of second calf. Heterozygosity effects were significant for heifer pre-joining weight and height as well as proportion pubertal. Breed differences were significant for the same traits plus pregnancy rate at second joining and proportion rearing two calves. Genetic parameters were reported for 13 traits. On average, higher genetic merit (Estimated Breeding Value, EBV percentile) Hereford bulls were used than Angus for growth and puberty, but they were similar for fat and reproduction. Days to calving BREEDPLAN EBVs of the sires were related to puberty and reproduction. Scrotal size BREEDPLAN EBVs of the sires were related to attainment of puberty genomic EBVs calculated. In summary, breed differences in growth and puberty were due to heterosis, but there was an advantage of Hereford genes for reproductive performance. Ongoing emphasis on selection for reduced days to calving and estimation of multi-breed EBVs is important.

Keywords: beef; crossbreeding; genomics; maternal.