The Influence of Acute Sprint Interval Training on Cognitive Performance of Healthy Younger Adults

Int J Environ Res Public Health. 2022 Jan 5;19(1):613. doi: 10.3390/ijerph19010613.

Abstract

There is considerable evidence showing that an acute bout of physical exercises can improve cognitive performance, but the optimal exercise characteristics (e.g., exercise type and exercise intensity) remain elusive. In this regard, there is a gap in the literature to which extent sprint interval training (SIT) can enhance cognitive performance. Thus, this study aimed to investigate the effect of a time-efficient SIT, termed as "shortened-sprint reduced-exertion high-intensity interval training" (SSREHIT), on cognitive performance. Nineteen healthy adults aged 20-28 years were enrolled and assessed for attentional performance (via the d2 test), working memory performance (via Digit Span Forward/Backward), and peripheral blood lactate concentration immediately before and 10 min after an SSREHIT and a cognitive engagement control condition (i.e., reading). We observed that SSREHIT can enhance specific aspects of attentional performance, as it improved the percent error rate (F%) in the d-2 test (t (18) = -2.249, p = 0.037, d = -0.516), which constitutes a qualitative measure of precision and thoroughness. However, SSREHIT did not change other measures of attentional or working memory performance. In addition, we observed that the exercise-induced increase in the peripheral blood lactate levels correlated with changes in attentional performance, i.e., the total number of responses (GZ) (rm = 0.70, p < 0.001), objective measures of concentration (SKL) (rm = 0.73, p < 0.001), and F% (rm = -0.54, p = 0.015). The present study provides initial evidence that a single bout of SSREHIT can improve specific aspects of attentional performance and conforming evidence for a positive link between cognitive improvements and changes in peripheral blood lactate levels.

Keywords: acute exercise; cognition; exercise–cognition; lactate; sprint interval training.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Adult
  • Cognition
  • Exercise
  • High-Intensity Interval Training*
  • Humans
  • Lactic Acid

Substances

  • Lactic Acid