Hydrothermal Synthesis of MnWO4@GO Composite as Non-Precious Electrocatalyst for Urea Oxidation

Nanomaterials (Basel). 2021 Dec 29;12(1):85. doi: 10.3390/nano12010085.

Abstract

In this study, manganese tungstate (MW) and MW/graphene oxide (GO) composites were prepared by a facile hydrothermal synthesis at pH values of 7 and 12. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used for the structural, compositional, and morphological characterization of the nanoparticles (NPs). The XRD analysis revealed that the formation of monoclinic MnWO4 did not have impurities. The SEM and TEM analyses showed that the synthesized NPs were rod-shaped and well-distributed on the GO. The as-synthesized samples can be used as electrocatalysts for the urea oxidation reaction (UOR). The MW@GO-12 electrocatalyst exhibited higher current density values compared to other electrocatalysts. This study provides a new platform for synthesizing inexpensive nanocomposites as promising electrocatalysts for energy storage and conversion applications.

Keywords: MnWO4; graphene oxide; hydrothermal; urea oxidation reaction (UOR).