Facile Pretreatment of Three-Dimensional Graphene through Electrochemical Polarization for Improved Electrocatalytic Performance and Simultaneous Electrochemical Detection of Catechol and Hydroquinone

Nanomaterials (Basel). 2021 Dec 27;12(1):65. doi: 10.3390/nano12010065.

Abstract

Three-dimensional graphene (3DG) with macroporous structure has great potential in the field of electroanalysis owing to a large active area, excellent electron mobility and good mass transfer. However, simple and low-cost preparation of 3DG electrodes with high electrocatalytic ability is still a challenge. Here, a fast and convenient electrochemical polarization method is established to pretreat free-standing 3DG (p-3DG) to offer high electrocatalytic ability. 3DG with monolithic and macroporous structure prepared by chemical vapor deposition (CVD) is applied as the starting electrode. Electrochemical polarization is performed using electrochemical oxidation (anodization) at high potential (+6 V) followed with electrochemical reduction (cathodization) at low potential (-1 V), leading to exposure of edge of graphene and introduction of oxygen-containing groups. The as-prepared p-3DG displays increased hydrophilicity and improved electrocatalytic ability. As a proof of concept, p-3DG was used to selective electrochemical detection of two isomers of benzenediol, hydroquinone (p-BD) and catechol (o-BD). In comparison with initial 3DG, p-3DG exhibits increased reversibility of redox reaction, improved peak current and good potential resolution with high potential separation between p-BD and o-BD. Individual or selective determination of p-BD or o-BD in single substance solution or binary mixed solution is realized. Real analysis of pond water is also achieved.

Keywords: electrocatalytic; electrochemical polarization; individual and selective determination; isomers of benzenediol; three-dimensional graphene.