Multilevel Central Trust Management Approach for Task Scheduling on IoT-Based Mobile Cloud Computing

Sensors (Basel). 2021 Dec 24;22(1):108. doi: 10.3390/s22010108.

Abstract

With the increasing number of mobile devices and IoT devices across a wide range of real-life applications, our mobile cloud computing devices will not cope with this growing number of audiences soon, which implies and demands the need to shift to fog computing. Task scheduling is one of the most demanding scopes after the trust computation inside the trustable nodes. The mobile devices and IoT devices transfer the resource-intensive tasks towards mobile cloud computing. Some tasks are resource-intensive and not trustable to allocate to the mobile cloud computing resources. This consequently gives rise to trust evaluation and data sync-up of devices joining and leaving the network. The resources are more intensive for cloud computing and mobile cloud computing. Time, energy, and resources are wasted due to the nontrustable nodes. This research article proposes a multilevel trust enhancement approach for efficient task scheduling in mobile cloud environments. We first calculate the trustable tasks needed to offload towards the mobile cloud computing. Then, an efficient and dynamic scheduler is added to enhance the task scheduling after trust computation using social and environmental trust computation techniques. To improve the time and energy efficiency of IoT and mobile devices using the proposed technique, the energy computation and time request computation are compared with the existing methods from literature, which identified improvements in the results. Our proposed approach is centralized to tackle constant SyncUPs of incoming devices' trust values with mobile cloud computing. With the benefits of mobile cloud computing, the centralized data distribution method is a positive approach.

Keywords: energy optimization; index terms—mobile cloud computing; task scheduling; trust development.

MeSH terms

  • Algorithms
  • Cloud Computing*
  • Computers, Handheld
  • Trust*