FeZrN Films: Magnetic and Mechanical Properties Relative to the Phase-Structural State

Materials (Basel). 2021 Dec 25;15(1):137. doi: 10.3390/ma15010137.

Abstract

The paper presents results of investigation of Fe65.3-100Zr34.7-0N7.5-0 films prepared by dc magnetron deposition on glass substrates and subsequent 1-hour annealing at temperatures of 300-600 °C. The influence of the chemical and phase compositions and structure of the films, which were studied by TEM, SEM, XRD, and GDOES, on their mechanical properties determined by nanoindentation and static magnetic properties measured by VSM method is analyzed. The studied films exhibit the hardness within a range of 14-21 GPa, low elastic modulus (the value can reach 156 Gpa), and an elastic recovery of 55-83%. It was shown that the films are strong ferromagnets with the high saturation induction Bs (up to 2.1 T) and low coercive field Hc (as low as 40 A/m). The correlations between the magnetic and mechanical properties, on one hand, and the chemical composition of the films, their phase, and structural states as well, on the other hand, are discussed.

Keywords: Fe-based films; X-ray diffraction; magnetic properties; magnetron sputtering; nanocrystalline; nanoindentation; phase composition; transmission electron microscopy.