Porous SiC and SiC/Cf Ceramic Microspheres Derived from Polyhydromethylsiloxane by Carbothermal Reduction

Materials (Basel). 2021 Dec 23;15(1):81. doi: 10.3390/ma15010081.

Abstract

A simple and inexpensive method for the preparation of porous SiC microspheres is presented. Polysiloxane microspheres derived from polyhydromethylsiloxane (PHMS) cross-linked with divinylbenzene (DVB) were ceramized under conditions leading to the removal of oxygen from the material. The content of free carbon (Cf) in highly crystalline silicon carbide (SiC) particles can be controlled by using various proportions of DVB in the synthesis of the pre-ceramic material. The chemical structure of the ceramic microspheres was studied by elemental analysis for carbon and oxygen, 29Si MAS NMR, 13C MAS NMR, SEM/EDS, XRD and Raman spectroscopies, and their morphology by SEM, nitrogen adsorption and mercury intrusion porosimetries. The gaseous products of the thermal reduction processes formed during ceramization created a porous structure of the microspheres. In the SiC/Cf microspheres, meso/micro pores were formed, while in carbon-free SiC, microspheres macroporosity dominated.

Keywords: carbothermal reduction; divinylbenzene cross-linker; free carbon content; porous ceramics; silicon carbide microspheres.