Performance Comparison of Lattice-Matched AlInN/GaN/AlGaN/GaN Double-Channel Metal-Oxide-Semiconductor High-Electron Mobility Transistors with Planar Channel and Multiple-Mesa-Fin-Channel Array

Materials (Basel). 2021 Dec 22;15(1):42. doi: 10.3390/ma15010042.

Abstract

In this work, Al0.83In0.17N/GaN/Al0.18Ga0.82N/GaN epitaxial layers used for the fabrication of double-channel metal-oxide-semiconductor high-electron mobility transistors (MOSHEMTs) were grown on silicon substrates using a metalorganic chemical vapor deposition system (MOCVD). A sheet electron density of 1.11 × 1013 cm-2 and an electron mobility of 1770 cm2/V-s were obtained. Using a vapor cooling condensation system to deposit high insulating 30-nm-thick Ga2O3 film as a gate oxide layer, double-hump transconductance behaviors with associated double-hump maximum extrinsic transconductances (gmmax) of 89.8 and 100.1 mS/mm were obtained in the double-channel planar MOSHEMTs. However, the double-channel devices with multiple-mesa-fin-channel array with a gmmax of 148.9 mS/mm exhibited single-hump transconductance behaviors owing to the better gate control capability. Moreover, the extrinsic unit gain cutoff frequency and maximum oscillation frequency of the devices with planar channel and multiple-mesa-fin-channel array were 5.7 GHz and 10.5 GHz, and 6.5 GHz and 12.6 GHz, respectively. Hooge's coefficients of 7.50 × 10-5 and 6.25 × 10-6 were obtained for the devices with planar channel and multiple-mesa-fin-channel array operating at a frequency of 10 Hz, drain-source voltage of 1 V, and gate-source voltage of 5 V, respectively.

Keywords: Ga2O3 gate oxide layer; double-channel epitaxial structure; double-hump transconductance; metal–oxide–semiconductor high-electron mobility transistors.