The Effect of Abiotic Stresses on the Protein Composition of Four Hungarian Wheat Varieties

Plants (Basel). 2021 Dec 21;11(1):1. doi: 10.3390/plants11010001.

Abstract

Global climate change in recent years has resulted in extreme heat and drought events that significantly influence crop production and endanger food security. Such abiotic stress during the growing season has a negative effect on yield as well as on the functional properties of wheat grain protein content and composition. This reduces the value of grain, as these factors significantly reduce end-use quality. In this study, four Hungarian bread wheat cultivars (Triticum aestivum ssp. aestivum) with different drought and heat tolerance were examined. Changes in the size- and hydrophobicity-based distribution of the total proteins of the samples have been monitored by SE- and RP-HPLC, respectively, together with parallel investigations of changes in the amounts of the R5 and G12 antibodies related to celiac disease immunoreactive peptides. Significant difference in yield, protein content and composition have been observed in each cultivar, altering the amounts of CD-related gliadin, as well as the protein parameters directly related to techno-functional properties (Glu/Gli ratio, UPP%). The extent of changes largely depended on the timing of the abiotic stress. The severity of the negative effect depended on the growth stage in which abiotic stress occurred.

Keywords: ELISA; HPLC; abiotic stress; climate change; heat-and drought stress; protein composition; wheat.