Interrogating the Behaviour of a Styryl Dye Interacting with a Mesoscopic 2D-MOF and Its Luminescent Vapochromic Sensing

Int J Mol Sci. 2021 Dec 28;23(1):330. doi: 10.3390/ijms23010330.

Abstract

In this contribution, we report on the solid-state-photodynamical properties and further applications of a low dimensional composite material composed by the luminescent trans-4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye interacting with a two-dimensional-metal organic framework (2D-MOF), Al-ITQ-HB. Three different samples with increasing concentration of DCM are synthesized and characterized. The broad UV-visible absorption spectra of the DCM/Al-ITQ-HB composites reflect the presence of different species of DCM molecules (monomers and aggregates). In contrast, the emission spectra are narrower and exhibit a bathochromic shift upon increasing the DCM concentration, in agreeance with the formation of adsorbed aggregates. Time-resolved picosecond (ps)-experiments reveal multi-exponential behaviors of the excited composites, further confirming the heterogeneous nature of the samples. Remarkably, DCM/Al-ITQ-HB fluorescence is sensitive to vapors of electron donor aromatic amine compounds like aniline, methylaniline, and benzylamine due to a H-bonding-induced electron transfer (ET) process from the analyte to the surface-adsorbed DCM. These findings bring new insights on the photobehavior of a well-known dye when interacting with a 2D-MOF and its possible application in sensing aniline derivatives.

Keywords: aggregates; host-guest interaction; hybrid materials; luminescent vapochromic sensing; time-resolved spectroscopy.

MeSH terms

  • Aniline Compounds / chemistry
  • Coloring Agents / chemistry*
  • Luminescence*
  • Metal-Organic Frameworks / chemistry*
  • Spectrometry, Fluorescence
  • Thermodynamics
  • Time Factors
  • Volatilization

Substances

  • Aniline Compounds
  • Coloring Agents
  • Metal-Organic Frameworks
  • aniline