Activatable Dual ROS-Producing Probe for Dual Organelle-Engaged Photodynamic Therapy

ACS Appl Bio Mater. 2021 May 17;4(5):4618-4628. doi: 10.1021/acsabm.1c00354. Epub 2021 Apr 27.

Abstract

Photodynamic therapy (PDT) necessitates approaches capable of increasing antitumor effects while decreasing nonspecific photodamage. We herein report an activatable probe (Glu-PyEB) comprising two distinct photosensitizers with mutually suppressed photodynamics. Activation by tumor-associated γ-glutamyltranspeptidase gives rise to a generator of superoxide radical (O2-•) accumulated in lysosomes and a producer of singlet oxygen (1O2) enriched in mitochondria. This enables light-irradiation-triggered damage of lysosomes and mitochondria, robust cell death, and tumor retardation in vivo, showing the use of paired photosensitizers subjected to reciprocally suppressed photodynamics for activatable PDT.

Keywords: activatable; dual photosensitizers; dual-organelle; photodynamic therapy; γ-glutamyltranspeptidase.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Biocompatible Materials / chemical synthesis
  • Biocompatible Materials / chemistry
  • Biocompatible Materials / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Drug Screening Assays, Antitumor
  • Female
  • Humans
  • Materials Testing
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Molecular Structure
  • Neoplasms, Experimental / drug therapy
  • Neoplasms, Experimental / metabolism
  • Neoplasms, Experimental / pathology
  • Organelles / drug effects*
  • Particle Size
  • Photochemotherapy*
  • Photosensitizing Agents / chemical synthesis
  • Photosensitizing Agents / chemistry
  • Photosensitizing Agents / pharmacology*
  • Reactive Oxygen Species / metabolism*

Substances

  • Antineoplastic Agents
  • Biocompatible Materials
  • Photosensitizing Agents
  • Reactive Oxygen Species