Nanoceutical Fabric Prevents COVID-19 Spread through Expelled Respiratory Droplets: A Combined Computational, Spectroscopic, and Antimicrobial Study

ACS Appl Bio Mater. 2021 Jul 19;4(7):5471-5484. doi: 10.1021/acsabm.1c00238. Epub 2021 Jun 17.

Abstract

Centers for Disease Control and Prevention (CDC) warns the use of one-way valves or vents in face masks for potential threat of spreading COVID-19 through expelled respiratory droplets. Here, we have developed a nanoceutical cotton fabric duly sensitized with non-toxic zinc oxide nanomaterial for potential use as a membrane filter in the one-way valve for the ease of breathing without the threat of COVID-19 spreading. A detailed computational study revealed that zinc oxide nanoflowers (ZnO NFs) with almost two-dimensional petals trap SARS-CoV-2 spike proteins, responsible to attach to ACE-2 receptors in human lung epithelial cells. The study also confirmed significant denaturation of the spike proteins on the ZnO surface, revealing removal of the virus upon efficient trapping. Following the computational study, we have synthesized ZnO NF on a cotton matrix using a hydrothermal-assisted strategy. Electron-microscopic, steady-state, and picosecond-resolved spectroscopic studies confirm attachment of ZnO NF to the cotton (i.e., cellulose) matrix at the atomic level to develop the nanoceutical fabric. A detailed antimicrobial assay using Pseudomonas aeruginosa bacteria (model SARS-CoV-2 mimic) reveals excellent antimicrobial efficiency of the developed nanoceutical fabric. To our understanding, the nanoceutical fabric used in the one-way valve of a face mask would be the choice to assure breathing comfort along with source control of COVID-19 infection. The developed nanosensitized cloth can also be used as an antibacterial/anti CoV-2 washable dress material in general.

Keywords: COVID-19; SARS-CoV-2 mimic; ZnO nanoflower; antimicrobial fabric; nanoceutical; self-cleaning PPE.

MeSH terms

  • Anti-Infective Agents / chemistry*
  • Anti-Infective Agents / metabolism
  • Anti-Infective Agents / pharmacology
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism
  • COVID-19 / prevention & control*
  • COVID-19 / virology
  • Cotton Fiber / analysis
  • Humans
  • Masks
  • Nanostructures / chemistry*
  • Pseudomonas aeruginosa / drug effects
  • Pseudomonas aeruginosa / metabolism
  • Recycling
  • Respiratory Aerosols and Droplets / virology
  • SARS-CoV-2 / drug effects
  • SARS-CoV-2 / isolation & purification
  • SARS-CoV-2 / metabolism
  • Spike Glycoprotein, Coronavirus / chemistry
  • Spike Glycoprotein, Coronavirus / metabolism
  • Zinc Oxide / chemistry

Substances

  • Anti-Infective Agents
  • Bacterial Proteins
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • Zinc Oxide