Ab initio calculations in atoms, molecules, and solids, treating spin-orbit coupling and electron interaction on an equal footing

J Chem Phys. 2022 Jan 7;156(1):014107. doi: 10.1063/5.0075900.

Abstract

We incorporate explicit, non-perturbative treatment of spin-orbit coupling into ab initio auxiliary-field quantum Monte Carlo (AFQMC) calculations. The approach allows a general computational framework for molecular and bulk systems in which material specificity, electron correlation, and spin-orbit coupling effects can be captured accurately and on an equal footing, with favorable computational scaling vs system size. We adopt relativistic effective-core potentials that have been obtained by fitting to fully relativistic data and that have demonstrated a high degree of reliability and transferability in molecular systems. This results in a two-component spin-coupled Hamiltonian, which is then treated by generalizing the ab initio AFQMC approach. We demonstrate the method by computing the electron affinity in Pb, the bond dissociation energy in Br2 and I2, and solid Bi.