Reachable workspace with real-time motion capture feedback to quantify upper extremity function: A study on children with brachial plexus birth injury

J Biomech. 2022 Feb:132:110939. doi: 10.1016/j.jbiomech.2021.110939. Epub 2021 Dec 30.

Abstract

Clinical upper extremity (UE) functional assessments and motion capture measures are limited to a set of postures and/or motions that may provide an incomplete evaluation of UE functionality. Reachable workspace analysis offers a more global assessment of UE function, but is reliant on patient compliance with instructions and may result in underestimates of a patient's true UE function. This study evaluated a clinical tool that incorporates real-time visual feedback with motion capture to provide an innovative means of engaging patients to ensure a 'best effort' quantification of their available UE workspace. Reachable workspace for 10 children with brachial plexus birth injury was collected with and without real-time feedback on the affected and unaffected limbs. Real-time feedback consisted of subjects reaching for virtual targets surrounding their physical space using a virtual cursor controlled by the real-time location of their hand. Real-time feedback resulted in significantly greater workspace in multiple regions on both the affected (3/6 octants; mean differences 10.8%-20.0%) and unaffected (6/6 octants; mean differences 24.3%-40.0%) limbs. Use of real-time feedback also yielded significant interlimb differences in workspace across more regions (4/6 octants; mean differences 29.0%-39.9% vs. 1/6 octants; mean difference 17%). Finally, real-time feedback resulted in significant interlimb differences in median reach distance across more regions (4/6 octants; mean differences 7.5%-44.8% vs. 1/6 octants; mean difference 11.2%). A reachable workspace tool with real-time feedback results in more workspace and UE function recorded and offers a highly visual and intuitive depiction of a patient's UE abilities.

Keywords: Brachial plexus; Function; Reach; Reachable workspace; Upper extremity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Birth Injuries*
  • Brachial Plexus*
  • Child
  • Feedback
  • Humans
  • Range of Motion, Articular
  • Upper Extremity