Deubiquitylase USP12 induces pro-survival autophagy and bortezomib resistance in multiple myeloma by stabilizing HMGB1

Oncogene. 2022 Feb;41(9):1298-1308. doi: 10.1038/s41388-021-02167-9. Epub 2022 Jan 7.

Abstract

Despite the establishment of novel therapeutic interventions, multiple myeloma (MM) remains invariably incurable due to development of drug resistance and subsequent relapse, which are attributed to activation of oncogenic pathways such as autophagy. Deubiquitinating enzymes (DUBs) are promising targets to overcome resistance to proteasome inhibitor-based treatment. Ubiquitin-specific protease-12 (USP12) is a DUB with a known prognostic value in several cancers. We found that USP12 protein levels were significantly higher in myeloma patient samples than in non-cancerous human samples. Depletion of USP12 suppressed cell growth and clonogenicity and inhibited autophagy. Mechanistic studies showed that USP12 interacted with, deubiquitylated and stabilized the critical autophagy mediator HMGB1 (high mobility group box-1) protein. Knockdown of USP12 decreased the level of HMGB1 and suppressed HMGB1-mediated autophagy in MM. Furthermore, basal autophagy activity associated with USP12/HMGB1 was elevated in bortezomib (BTZ)-resistant MM cell lines. USP12 depletion, concomitant with a reduced expression of HMGB1, suppressed autophagy and increased the sensitivity of resistant cells to BTZ. Collectively, our findings have identified an important role of the deubiquitylase USP12 in pro-survival autophagy and resultant BTZ resistance in MM by stabilizing HMGB1, suggesting that the USP12/HMGB1 axis might be pursued as a potential diagnostic and therapeutic target in human MM.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bortezomib*

Substances

  • Bortezomib