Solvent-Free Strategy To Encapsulate Degradable, Implantable Metals in Silk Fibroin

ACS Appl Bio Mater. 2018 Nov 19;1(5):1677-1686. doi: 10.1021/acsabm.8b00498. Epub 2018 Oct 31.

Abstract

Implantable electronics hold enormous clinical potential for diagnosis and treatment of neurodegenerative and cardiac diseases and abnormalities. Transient devices are attractive alternatives to conventional silicon electrodes, as they can provide short-term electrical stimulation/recording followed by complete device degradation, mitigating the need for removal surgeries. Packaging transient metals is inherently challenging as they degrade upon contact with aqueous conditions. Development of new transient metal packaging strategies is a critical step toward transient device development. In this fundamental work, a solvent-free compression molding approach to encapsulate magnesium, a resorbable metal, in silk fibroin protein is reported. Silk fibroin was selected because of its processing versatility, desirable mechanical properties, compatibility with biological environments, and controllable degradation behavior in aqueous environments. The silk/magnesium composites were fabricated via compression molding, followed by water annealing to modify the secondary structure of the silk protein matrix to tune physical properties. Transient composite properties as a function of water annealing time are presented, which elucidate synergies between silk physical properties and degradation kinetics of the encapsulated magnesium, information useful in the design of multifunctional, transient metal-based constructs.

Keywords: composite; controlled degradation; magnesium; silk fibroin; transient.