Protective Effect of Mild Hypothermia on Spinal Cord Ischemia-Induced Delayed Paralysis and Spinal Cord Injury

Neurochem Res. 2022 May;47(5):1212-1225. doi: 10.1007/s11064-021-03515-7. Epub 2022 Jan 6.

Abstract

To explore the mechanism regarding the regulation of spinal cord ischemia (SCI) in rats by mild hypothermia. A SCI rat model was established through aorta occlusion, and in some cases, the rats were intervened with mild hypothermia, after which motor function, microglia activation, and M1/M2 polarization in rats were measured. Also, the expression of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and neuronal apoptosis were examined. Lipopolysaccharide (LPS)-induced M1 microglia and IL-4-induced M2 microglia were intrathecally injected into rats to evaluate the effect of microglial polarization on SCI. In in vitro experiments, primary microglial cells were treated under hypothermic condition, in which M1/M2 polarization and microglia apoptosis, the levels of iNOS, CD86, CD206, Arg-1 and inflammatory cytokines were assessed. Western blot analysis detected the activation of the TLR4/NF-κB pathway to investigate the role of this pathway in M1/M2 polarization. SCI treatment impaired motor function, induced higher M1 microglia proportion, and increased the levels of pro-inflammatory cytokines in rats, and mild hypothermic treatment attenuated these trends. Moreover, injection of M1 microglia increased M1 microglia proportion and increased the levels of pro-inflammatory cytokines, while injection of M2 microglia induced the reverse results, i.e. decreased M1 microglia proportion and reduced pro-inflammatory cytokine levels. In LPS-induced microglial cells, mild hypothermia treatment increased M2 microglia proportion and decreased pro-inflammatory cytokine levels, relative to normothermia. Mild hypothermia inactivated the TLR4/NF-κB pathway in LPS-treated microglia. TLR4 overexpression reversed the function of mild hypothermia in LPS-stimulated microglia, and under normal condition, TLR4/NF-κB pathway suppressed microglial M2 polarization. Mild hypothermia inhibits TLR4/NF-κB pathway and promotes microglial M2 polarization, thus attenuating SCI-induced injury and inflammation.

Keywords: Basso, Beattie, and Bresnahan rating scale; Delayed paralysis; Microglia polarization; Mild hypothermia; Spinal cord injury; Spinal cord ischemia.

MeSH terms

  • Animals
  • Hypothermia* / metabolism
  • Microglia / metabolism
  • Paralysis / metabolism
  • Rats
  • Spinal Cord Injuries* / complications
  • Spinal Cord Injuries* / metabolism
  • Spinal Cord Injuries* / therapy
  • Spinal Cord Ischemia* / therapy