Assessment of Cavitation Erosion in a Water-Jet Pump Based on the Erosive Power Method

Scanning. 2021 Dec 16:2021:5394782. doi: 10.1155/2021/5394782. eCollection 2021.

Abstract

Cavitation affects the performance of water-jet pumps. Cavitation erosion will appear on the surface of the blade under long-duration cavitation conditions. The cavitation evolution under specific working conditions was simulated and analyzed. The erosive power method based on the theory of macroscopic cavitation was used to predict cavitation erosion. The result shows that the head of the water-jet pump calculated using the DCM-SST turbulence model is 12.48 m. The simulation error of the rated head is 3.8%. The cavitation structure of tip leakage vortex was better captured. With the decrease of the net positive suction head, the position where the severe cavitation appears in the impeller domain gradually moves from the tip to the root. The erosion region obtained by the cavitation simulation based on the erosive power method is similar to the practical erosion profile in engineering. As the net positive suction head decreases, the erodible area becomes larger, and the erosion intensity increases.