Anteromedial Tibial Attachment in Single-Bundle Anterior Cruciate Ligament Reconstruction Can Represent Normal Kinematics in Computer Simulation

J Knee Surg. 2023 Jun;36(7):731-737. doi: 10.1055/s-0041-1741390. Epub 2022 Jan 6.

Abstract

Tunnel position during anterior cruciate ligament (ACL) reconstruction is considered as an important factor to restore normal knee kinematics and to gain better clinical outcomes. It is still unknown where the optimal femoral and tibial tunnel position is located in single-bundle (SB) ACL reconstruction. The purposes of this study were to analyze the knee kinematics with various graft positions and to propose the optimal graft position during SB ACL reconstruction. A musculoskeletal computer simulation was used to analyze knee kinematics. Four attachments on the femoral side (anteromedial [AM], mid, posterolateral [PL], and over-the-top positions) and three attachments on the tibial side (AM, middle, and PL positions) were determined. The middle-bundle attachment was placed at the midpoint of the AM and PL bundle attachments for the femoral and tibial attachments. SB ACL reconstruction models were constructed to combine each of the four femoral attachments with each of three tibial attachments. Kinematic comparison was made among a double-bundle (DB) model and 12 SB reconstruction models during deep knee bend and stair descent activity. The tunnel position of the tibia had greater effect of knee kinematics than that of the femur. AM tibial attachment models showed similar medial and lateral anteroposterior positions to the DB model for both activities. Axial rotation in the AM tibial attachment models was similar to the DB model regardless of the femoral attachment, whereas greater maximum axial rotation was exhibited in the PL tibial attachment models, especially during stair descent activity. AM tibial attachment can represent normal knee kinematics, whereas the PL tibial attachment can induce residual rotational instability during high-demand activities. The AM tibial tunnel is recommended for SB ACL reconstruction.

MeSH terms

  • Anterior Cruciate Ligament / surgery
  • Anterior Cruciate Ligament Reconstruction*
  • Biomechanical Phenomena
  • Computer Simulation
  • Femur / surgery
  • Humans
  • Knee Joint / surgery
  • Tibia* / surgery