Pressure-stabilized high-energy-density material YN10

J Phys Condens Matter. 2022 Jan 20;34(13). doi: 10.1088/1361-648X/ac48c0.

Abstract

Polynitrogen compounds have been intensively studied for potential applications as high energy density materials, especially in energy and military fields. Here, using the swarm intelligence algorithm in combination with first-principles calculations, we systematically explored the variable stoichiometries of yttrium-nitrogen compounds on the nitrogen-rich regime at high pressure, where a new stable phase of YN10adoptingI4/msymmetry was discovered at the pressure of 35 GPa and showed metallic character from the analysis of electronic properties. In YN10, all the nitrogen atoms weresp2-hybridized in the form of N5ring. Furthermore, the gravimetric and volumetric energy densities were estimated to be 3.05 kJ g-1and 9.27 kJ cm-1respectively. Particularly, the calculated detonation velocity and pressure of YN10(12.0 km s-1, 82.7 GPa) was higher than that of TNT (6.9 km s-1, 19.0 GPa) and HMX (9.1 km s-1, 39.3 GPa), making it a potential candidate as a high-energy-density material.

Keywords: high energy density material; metal nitrides; structure prediction.