Heuristics from bounded meta-learned inference

Psychol Rev. 2022 Oct;129(5):1042-1077. doi: 10.1037/rev0000330. Epub 2022 Jan 6.

Abstract

Numerous researchers have put forward heuristics as models of human decision-making. However, where such heuristics come from is still a topic of ongoing debate. In this work, we propose a novel computational model that advances our understanding of heuristic decision-making by explaining how different heuristics are discovered and how they are selected. This model-called bounded meta-learned inference (BMI)-is based on the idea that people make environment-specific inferences about which strategies to use while being efficient in terms of how they use computational resources. We show that our approach discovers two previously suggested types of heuristics-one reason decision-making and equal weighting-in specific environments. Furthermore, the model provides clear and precise predictions about when each heuristic should be applied: Knowing the correct ranking of attributes leads to one reason decision-making, knowing the directions of the attributes leads to equal weighting, and not knowing about either leads to strategies that use weighted combinations of multiple attributes. In three empirical paired comparison studies with continuous features, we verify predictions of our theory and show that it captures several characteristics of human decision-making not explained by alternative theories. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Decision Making*
  • Heuristics*
  • Humans