[Spatial and Temporal Distribution of Aerobic Denitrification Bacterial Community in Sediments of Gangnan Reservoir]

Huan Jing Ke Xue. 2022 Jan 8;43(1):314-328. doi: 10.13227/j.hjkx.202104196.
[Article in Chinese]

Abstract

In order to study the spatial and temporal distribution characteristics of aerobic denitrification bacteria in the sediments of Gangnan Reservoir, the aerobic denitrification bacterial community was analyzed using a MiSeq high-throughput sequencing technique based on the napA gene. Moreover, the composition, diversity, difference, and network analysis of the aerobic denitrification bacterial community were investigated. The results showed higher α-diversity (Chao1 index, Observed species index, and Shannon index) in autumn and winter than that in spring and summer; that is, the richness and diversity of sampling sites in autumn and winter were higher. In terms of spatial distribution, the Chao1 index, Observed species index, Shannon index, and Simpson index of the bacterial community in the sampling sites in the transition zone were higher than those in the sampling sites in the inflow area and the main reservoir area, indicating that the richness and diversity of the bacterial community in the sampling sites in the transition zone were the highest. The aerobic denitrifying bacteria in the sediments of Gangnan Reservoir mainly belong to Protebacteria. The first dominant class was β-Proteobacteria, and the first dominant genus was Thauera. A Venn diagram analysis indicated that the community of aerobic denitrification bacteria exhibited significant spatial and temporal differences. At the spatial level, there were higher numbers of different species based on LEfSe analysis than that at the seasonal level. Among the marker species screened by random forest analysis, Comamonas had the highest contribution in all spatial sampling sites, whereas Pectobacterium had the highest contribution in all seasonal sampling sites. Network analysis showed that there were nine modules, including 565 edges of 297 nodes; 47 keystone species were obtained based on the indicator OTUs analysis and network analysis. The principal co-ordinates analysis revealed that keystone species in the spatial distribution exhibited significant differences (Adonis, P<0.001). The results of this study provide scientific basis for the separation and identification of efficient aerobic denitrifying bacteria.

Keywords: Gangnan Reservoir; aerobic denitrification; biodiversity analysis; network analysis; sediment.

MeSH terms

  • Bacteria* / genetics
  • Denitrification*