Estimating Effective Porosity in Bedrock Aquifers

Ground Water. 2022 Mar;60(2):169-179. doi: 10.1111/gwat.13171. Epub 2022 Jan 13.

Abstract

Flow in many bedrock aquifers is through fracture networks. Point to point tracer tests using applied tracers provide a direct measure of time of travel and are most useful for determining effective porosity. Calculated values from these tests are typically between 10-4 and 10-2 (0.01% to 1%), with these low values indicating preferential flow through fracture and channel networks. Tracer tests are not commonly used in site investigations, and specific yield is often used as a proxy for effective porosity. The most popular methods have used centrifuge measurements, water table fluctuations, pumping tests, and packer tests. Specific yield varies substantially with the testing method. No method is as reliable as tracer testing for providing estimates of effective porosity, but all methods provide complementary insights on aquifer structure. Temporal and spatial scaling effects suggest that bedrock aquifers have hierarchical structures, with a network of more permeable fractures and channels, which are connected to less permeable fractures and to the matrix. Consequences of the low effective porosities include groundwater velocities that often exceed 100 m/d and more frequent microbial contamination than in aquifers in unconsolidated sediments. The large uncertainty over the magnitude of effective porosity in bedrock aquifers makes it an important parameter to determine in studies where time of travel is of interest.

Publication types

  • Review

MeSH terms

  • Groundwater*
  • Porosity
  • Water Movements