Composite Dynamic Hydrogels Constructed on Boronic Ester Cross-Links with NIR-Enhanced Diffusivity

Biomacromolecules. 2022 Mar 14;23(3):948-959. doi: 10.1021/acs.biomac.1c01359. Epub 2022 Jan 6.

Abstract

Dynamic hydrogels with thermosensitive cross-links are highly promising platforms for "on-demand" drug delivery systems. However, there is a problem with triggering a response in their whole volume, which reduces their efficiency. To achieve better thermoresponsiveness, a graphene oxide-filled composite hydrogel based on boronic ester cross-links, composed of hyperbranched polyglycidol, HbPGL, and poly(acrylamide-ran-2-acrylamidephenylboronic acid), poly(AM-ran-2-AAPBA), has been constructed. The homogeneous embedment of graphene oxide (GO) in the network assured near-infrared (NIR)-photothermal response in its bulk due to the rapid light-to-heat conversion. The rate and amplitude of materials response increase with graphene oxide concentration. The temperature of the hydrogel containing graphene oxide at a concentration of 13.2 mg/mL increased from 36.6 to 41 °C in 29 s upon NIR irradiation. The network diffusivity and the extent of its change with temperature can be regulated by the length of the applied boronic acid-based cross-linking agent. The hydrogel constructed on the shorter copolymer (Mn = 23 000 g/mol) displayed a significant increase in diffusivity with temperature. A diffusion ordered NMR study revealed that the diffusion coefficient determined for niacin, a model drug encapsulated in the hydrogel, increased from 6.09 × 10-10 at 25 °C to 1.28 × 10-9 m2/s at 41 °C. In the case of the hydrogel constructed on the longer acrylamide copolymer (Mn = 43 000 g/mol), in which physical entanglements stabilize the network, the change of encapsulated niacin diffusion coefficient was significantly smaller, i.e., from 3.83 × 10-10 at 25 °C to 6.63 × 10-10 m2/s at 41 °C. The possibility of on-demand NIR-regulated diffusivity of the reported boronic ester-based hydrogels makes them promising candidates for controlled drug delivery platforms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acrylamide
  • Boron
  • Esters
  • Hydrogels* / chemistry
  • Niacin*
  • Polymers / chemistry

Substances

  • Esters
  • Hydrogels
  • Polymers
  • Acrylamide
  • Niacin
  • Boron