Freestanding Fe3O4/Ti3C2T x MXene/polyurethane composite film with efficient electromagnetic shielding and ultra-stretchable performance

Nanotechnology. 2022 Jan 24;33(16). doi: 10.1088/1361-6528/ac4878.

Abstract

Electromagnetic pollution seriously affects the human reproductive system, cardiovascular system, people's visual system, and so on. A novel versatile stretchable and biocompatible electromagnetic interference (EMI) shielding film has been developed, which could effectively attenuate electromagnetic radiation. The EMI shielding film was fabricated with a convenient solution casting and steam annealing with 2D MXene, iron oxide nanoparticles, and soluble polyurethane. The EMI shielding effectiveness is about 30.63 dB at 8.2 GHz, based on its discretized interfacial scattering and high energy conversion efficiency. Meanwhile, the excellent tensile elongation is 30.5%, because of the sliding migration and gradient structure of the nanomaterials doped in a polymer matrix. In addition, the film also demonstrated wonderful biocompatibility and did not cause erythema and discomfort even after being attached to the arm skin over 12 h, which shows the great potential for attenuation of electromagnetic irradiation and protection of human health.

Keywords: Fe3O4; MXene; electromagnetic interference; film; polyurethane.