Association between Changes in Cortical Thickness and Functional Connectivity in Male Patients with Alcohol-dependence

Exp Neurobiol. 2021 Dec 31;30(6):441-450. doi: 10.5607/en21036.

Abstract

Many studies have reported structural or functional brain changes in patients with alcohol-dependence (ADPs). However, there has been an insufficient number of studies that were able to identify functional changes along with structural abnormalities in ADPs. Since neuronal cell death can lead to abnormal brain function, a multimodal approach combined with structural and functional studies is necessary to understand definitive neural mechanisms. Here, we explored regional difference in cortical thickness and their impact on functional connection along with clinical relevance. Fifteen male ADPs who have been diagnosed by the Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5) underwent highresolution T1 and resting-state functional magnetic resonance imaging (MRI) scans together with 15 male healthy controls (HCs). The acquired MRI data were post-processed using the Computational Anatomy Toolbox (CAT 12) and CONN-fMRI functional connectivity (FC) toolbox with Statistical Parametric Mapping (SPM 12). When compared with male HCs, the male ADPs showed significantly reduced cortical thickness in the left postcentral gyrus (PoCG), an area responsible for altered resting-state FC patterns in male ADPs. Statistically higher FCs in PoCG-cerebellum (Cb) and lower FCs in PoCG-supplementary motor area (SMA) were observed in male ADPs. In particular, the FCs with PoCG-Cb positively correlated with alcohol use disorders identification test (AUDIT) scores in male ADPs. Our findings suggest that the association of brain structural abnormalities and FC changes could be a characteristic difference in male ADPs. These findings can be useful in understanding the neural mechanisms associated with anatomical, functional and clinical features of individuals with alcoholism.

Keywords: Alcoholism; Brain cortical thickness; Male patients with alcohol-dependence; Postcentral gyrus; Resting-state functional connectivity.