Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance

Angew Chem Int Ed Engl. 2022 Mar 1;61(10):e202114538. doi: 10.1002/anie.202114538. Epub 2022 Jan 17.

Abstract

Atomically precise metal clusters are attractive as highly efficient catalysts, but suffer from continuous efficiency deactivation in the catalytic process. Here, we report the development of an efficient strategy that enhances catalytic performance by electropolymerization (EP) of metal clusters into hybrid materials. Based on carbazole ligand protection, three polymerized metal-cluster hybrid materials, namely Poly-Cu14 cba, Poly-Cu6 Au6 cbz and Poly-Cu6 Ag4 cbz, were prepared. Compared with isolated metal clusters, metal clusters immobilizing on a biscarbazole network after EP significantly improved their electron-transfer ability and long-term recyclability, resulting in higher catalytic performance. As a proof-of-concept, Poly-Cu14 cba was evaluated as an electrocatalyst for reducing nitrate (NO3 - ) to ammonia (NH3 ), which exhibited ≈4-fold NH3 yield rate and ≈2-fold Faraday efficiency enhancement compared to that of Cu14 cba with good durability. Similarly, Poly-Cu6 Au6 cbz showed 10 times higher photocatalytic efficiency towards chemical warfare simulants degradation than the cluster counterpart.

Keywords: Electrocatalysis; Electropolymerization; Metal Nanoclusters; Nitrate Reduction; Photocatalysis.